V = 1743.9 (7) Å³

Mo $K\alpha$ radiation

 $0.60 \times 0.54 \times 0.50 \text{ mm}$

2 standard reflections

every 70 reflections

intensity decay: none

 $\mu = 0.11 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.017$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The O,O'-diacetyl (R,R)-hydrogentartrate ester of (S)-pantolactone¹

Janusz Zachara,* Izabela D. Madura, Urszula Bernaś and Ludwik Synoradzki

Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa Poland

Correspondence e-mail: janzac@ch.pw.edu.pl

Received 29 May 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.090; data-to-parameter ratio = 8.0.

The synthesis of the title compound, (1R.2R)-1-carboxy-2-[(3S)-4,4-dimethyl-2-oxotetrahydrofuran-3-yloxycarbonyl]ethane-1,2-diyl diacetate, C14H18O10, from diacetyltartaric acid anhydride and pantolactone gave two enantiomeric pairs and the crystal structure of the R,R,S enantiomer is presented here. The molecule consists of a hydrogen tartrate fragment in which the carboxyl group and the lactone ester group are in an anti conformation. In the crystal structure, molecules are linked into C(10) chains by an intermolecular $O-H\cdots O$ hydrogen bond and further by $C-H \cdots O$ interactions to form a layer structure with the second-level graph-set descriptor $R_2^2(8)[R_4^4(26)].$

Related literature

The corresponding (R,R,R) diastereoisomer crystallizes as the monohydrate (Zachara et al., 2007; see the following paper). The molecular geometry is close to that of the (R,R,S) isomer but the molecules are $O-H \cdots O$ linked *via* water molecules to form a layer structure. There are only two other structurally characterized (R,R)-hydrogentartrate esters to date (Kivikoski et al., 1993; Mravik et al., 1996).

For related literature, see: Bernstein et al. (1995); Beutel & Tishler (1946); Etter (1990); Ghosh et al. (2001).

¹ Tartaric acid and its O-acyl derivatives. Part 3.

Experimental

Crystal data

C14H18O10 $M_r = 346.28$ Orthorhombic, $P2_12_12_1$ a = 7.946 (2) Å b = 13.067 (3) Å c = 16.796 (3) Å

Data collection

Siemens P3 diffractometer Absorption correction: none 3184 measured reflections 1784 independent reflections 1420 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 1.03	refinement
1784 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots O5^i$	0.95 (5)	1.89 (4)	2.725 (3)	146 (4)
$C5-H5\cdots O2^{ii}$	0.98	2.53	3.396 (4)	147
$C12 - H12A \cdots O8^{iii}$	0.96	2.54	3.476 (4)	166
$C14-H14A\cdots O4^{iv}$	0.96	2.47	3.381 (4)	159
$C14-H14B\cdots O10^{v}$	0.96	2.29	3.231 (5)	165
Symmetry codes: (i)	$-x + \frac{3}{2}, -y + \frac{3}{2}$	$+1, z + \frac{1}{2};$ (ii)	$-x + \frac{1}{2}, -y +$	$1, z - \frac{1}{2};$ (iii)

Symmetry codes. (1) $x + \frac{1}{2}, y + 1, z + \frac{1}{2}, (1) x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: P3/P4-PC Software (Siemens, 1991); cell refinement: P3/P4-PC Software; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was financially supported by Warsaw University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2407).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Beutel, R. & Tishler, M. (1946). J. Am. Chem. Soc. 68, 1463-1465.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Ghosh, A. K., Kltun, E. S. & Bilcer, G. (2001). Synthesis, 9, 1281-1285.
- Kivikoski, J., Vepsalainen, J., Suontamo, R., Pohjala, E. & Laatikainen, R. (1993). Tetrahedron Asymmetry, 4, 709-722.
- Mravik, A., Böcskei, Z., Keszei, S., Elekes, F. & Fogassy, E. (1996). Tetrahedron Asymmetry, 7, 1477-1484.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1991). P3/P4-PC (Version 4.27) and XDISK (Version 4.20.2 PC). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zachara, J., Madura, I. D., Bernaś, U. & Synoradzki, L. (2007). Acta Cryst. E63, 03210.

Acta Cryst. (2007). E63, o3209 [doi:10.1107/S1600536807027316]

The O,O'-diacetyl (R,R)-hydrogentartrate ester of (S)-pantolactone

J. Zachara, I. D. Madura, U. Bernas and L. Synoradzki

Comment

Four diastereomeric diacetyl hydrogentartrate esters of pantolactone representing two enantiomeric pairs have been obtained from diacetyltartaric acid anhydride and pantolactone. They may be exploited in the resolution of racemic pantolactone *via* diastereomeric ester formation (Beutel & Tishler, 1946). The esters posses unique structure, which combines two natural units: of tartaric acid and of pantolactone, what may be interesting in the synthesis of bioactive molecules from the chiral pool (Ghosh *et al.*, 2001). Although application of such compounds is unknown it seems that they may be used, *e.g.* in the polymer chemistry. The structure of the (*R*,*R*,*S*) enantiomer (I) is presented here.

The molecule of (I) (Fig. 1) consists of the hydrogentartrate fragment in which the carboxyl group and the lactone ester group are in *anti* conformation with the torsion angle C1—C2—C3—C4 equal to 172.8 (2)°. The same conformation is observed in (*S*)-tetrahydrofurfuryl -*O*,*O*'-diacetyl-(*R*,*R*)-hydrogentartrate (Mravik *et al.*, 1996) were the relevant torsion angle is 168.1 (5)°. Whereas in the second structurally characterized derivative, (*S*)-timolol-*O*,*O*'-diacetyl-(*R*,*R*)-hydrogentartrate (Kivikoski *et al.*, 1993) the *gauche* conformation is observed and the corresponding torsion angle equals to 37.0 (5)°. The ester fragment consists of (*S*)-pantalactone heterocycle showing the open envelope conformation with the C8 atom displaced by 0.626 (3) Å out of the l.s. plane defined by C5, C6, O6 and C7 atoms.

The strong intermolecular hydrogen bonds are observed between the O1—H1 donor of carboxyl group and the carbonyl O5ⁱ atom of pantalactone [symmetry code: (i) 3/2 - x, 1 - y, 1/2 + z]. The molecules are arranged into infinite one-dimensional chain running along *c* axis with the assigned graph descriptor *C*(10) (Etter, 1990). The weak C—H…O intermolecular interactions are observed between C5—H5 chiral atom and the O2ⁱⁱ carbonyl oxygen of the carboxylic group [symmetry code: (ii) 1/2 - x, 1 - y, -1/2 + z]. This motif can be described as *C*(8) and it is also running along [001] direction. Together with the O1—H1…O5 motif they form a layer structure on (100) plane (Fig. 2) with the second level graph extended descriptor R^2_2 (8)[R^4_4 (26)] (Bernstein *et al.*, 1995). The remaining carbonyl oxygen O4, O8 and O10 atoms act as the acceptors to the methyl groups only and weakly join the adjacent layers into three-dimensional structure.

Experimental

A (1:1 mol/mol) mixture of diacetyl-(*R*,*R*)-tartaric anhydride and (*S*)-pantolactone in toluene was heated up to boiling temperature in a nitrogen atmosphere under reflux for 18 h. The mixture was then cooled to the room temperature and filtered. The resulting white solid product was recrystallized from 2-propanol to give pure compound (I) with mp 183.8–185.5°C. $[\alpha]^{25}_{D} = +9.5\%$ (*c* 2, ethyl acetate). IR (KBr): v = 1088, 1212 cm⁻¹, (C—O), v = 1760 cm⁻¹ (C=O), v = 2946 cm⁻¹ (CH₃). Crystals suitable for single-crystal X-ray diffraction measurement were recrystallized from saturated ethyl acetate.

Refinement

Due to the absence of significant anomalous scattering effects, the measured Friedel pairs have been merged. The absolute structure was assigned on the basis of the known configuration of the starting materials. H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2$ (1.5 for methyl groups) × $U_{eq}(C)$. Two methyl groups (C12, C14) were modelled as idealized disordered rotating groups with refined occupancy factors, 0.69 (5) and 0.69 (4) for major conformers, respectively. The position of the H atom attached to O atom was freely refined with $U_{iso}(H) = 1.5 \times U_{eq}(O)$.

Figures

Fig. 1. *ORTEP* plot of the molecural structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms not bonded to chiral carbons or the O atom are omitted for clarity.

Fig. 2. An *a* axis projection showing layers of molecules linked by O—H···O (dashed lines) and C—H···O (dotted lines) H-bonds. Symmetry codes: (i) 3/2 - x, 1 - y, 1/2 + z; (ii) 1/2 - x, 1 - y, z - 1/2.

(1R,2R)-1-carboxy-2-[(3S)-4,4-dimethyl-2-oxotetrahydrofuran-3- yloxycarbonyl]ethane-1,2-diyl diacetate

Crystal data

$C_{14}H_{18}O_{10}$	$D_{\rm x} = 1.319 {\rm ~Mg~m}^{-3}$
$M_r = 346.28$	Melting point: 183.8 K
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 28 reflections
<i>a</i> = 7.946 (2) Å	$\theta = 15-24^{\circ}$
b = 13.067 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 16.796 (3) Å	T = 293 (2) K
$V = 1743.9 (7) \text{ Å}^3$	Prism, white
Z = 4	$0.60\times0.54\times0.50~mm$
$F_{000} = 728$	

Data collection

Siemens P3 diffractometer	$R_{\rm int} = 0.017$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.0^{\circ}$

Monochromator: graphite	$\theta_{\min} = 2.4^{\circ}$
T = 293(2) K	$h = -5 \rightarrow 9$
profile data from $\omega/2\theta$ scans	$k = -15 \rightarrow 15$
Absorption correction: none	$l = -20 \rightarrow 20$
3184 measured reflections	2 standard reflections
1784 independent reflections	every 70 reflections
1420 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.03

1784 reflections

223 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

H atoms treated by a mixture of

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.14 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{min} = -0.11 \text{ e} \text{ Å}^{-3}$

independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0483P)^2 + 0.1521P]$

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0133 (17)

Extinction correction: SHELXL97 (Sheldrick, 1997),

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $I > 2\sigma(I)$ is used only for calculating *R*-factors and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O2	0.3053 (3)	0.56229 (18)	0.66759 (13)	0.0712 (7)	
01	0.5720 (3)	0.6007 (2)	0.63717 (13)	0.0694 (7)	
H1	0.591 (5)	0.586 (3)	0.692 (3)	0.104*	
O3	0.5095 (3)	0.55520 (13)	0.37040 (10)	0.0507 (5)	
O4	0.4240 (3)	0.39211 (15)	0.38236 (12)	0.0646 (7)	
05	0.7548 (4)	0.4649 (2)	0.26751 (13)	0.0772 (7)	
O6	0.6492 (4)	0.56521 (18)	0.17255 (12)	0.0783 (8)	
07	0.2241 (2)	0.54728 (13)	0.51039 (12)	0.0485 (5)	

08	0.1568 (3)	0.71252 (15)	0.50821 (17)	0.0749 (7)			
O9	0.4740 (2)	0.39796 (13)	0.54300 (10)	0.0434 (5)			
O10	0.7233 (3)	0.34030 (19)	0.50182 (17)	0.0838 (8)			
C1	0.4147 (4)	0.5780 (2)	0.62065 (17)	0.0469 (7)			
C2	0.3928 (3)	0.5724 (2)	0.53104 (15)	0.0370 (6)			
H2	0.4236	0.6382	0.5070	0.044*			
C3	0.5048 (3)	0.48876 (18)	0.49835 (14)	0.0386 (6)			
H3	0.6226	0.5089	0.5057	0.046*			
C4	0.4737 (3)	0.4697 (2)	0.41073 (15)	0.0420 (7)			
C5	0.4859 (4)	0.5518 (2)	0.28598 (15)	0.0493 (7)			
Н5	0.3951	0.5040	0.2728	0.059*			
C6	0.6447 (5)	0.5206 (2)	0.24441 (18)	0.0603 (9)			
C7	0.5031 (5)	0.6327 (2)	0.16463 (18)	0.0686 (10)			
H7A	0.4133	0.5989	0.1357	0.082*			
H7B	0.5332	0.6952	0.1368	0.082*			
C8	0.4488 (5)	0.6560 (2)	0.25043 (18)	0.0600 (9)			
C9	0.2646 (6)	0.6854 (3)	0.2554 (2)	0.0922 (13)			
H9A	0.2487	0.7517	0.2321	0.138*			
H9B	0.2303	0.6871	0.3102	0.138*			
H9C	0.1982	0.6360	0.2272	0.138*			
C10	0.5602 (7)	0.7381 (2)	0.2871 (2)	0.0944 (15)			
H10A	0.5345	0.8031	0.2634	0.142*			
H10B	0.6762	0.7216	0.2775	0.142*			
H10C	0.5402	0.7413	0.3434	0.142*			
C11	0.1167 (4)	0.6263 (2)	0.50047 (19)	0.0500 (7)			
C12	-0.0534 (4)	0.5889 (3)	0.4791 (3)	0.0923 (14)			
H12A	-0.1281	0.6460	0.4731	0.138*	0.69 (5)		
H12B	-0.0944	0.5447	0.5205	0.138*	0.69 (5)		
H12C	-0.0477	0.5516	0.4300	0.138*	0.69 (5)		
H12D	-0.0520	0.5155	0.4759	0.138*	0.31 (5)		
H12E	-0.0858	0.6168	0.4285	0.138*	0.31 (5)		
H12F	-0.1325	0.6100	0.5191	0.138*	0.31 (5)		
C13	0.5991 (4)	0.3268 (2)	0.53940 (19)	0.0537 (8)			
C14	0.5592 (5)	0.2359 (2)	0.5890 (2)	0.0724 (10)			
H14A	0.6507	0.1881	0.5865	0.109*	0.69 (4)		
H14B	0.4585	0.2040	0.5695	0.109*	0.69 (4)		
H14C	0.5424	0.2569	0.6432	0.109*	0.69 (4)		
H14D	0.4504	0.2446	0.6130	0.109*	0.31 (4)		
H14E	0.6426	0.2287	0.6300	0.109*	0.31 (4)		
H14F	0.5587	0.1758	0.5562	0.109*	0.31 (4)		
	~1						
Atomic displacement	Atomic displacement parameters (A^2)						

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0817 (17)	0.0784 (15)	0.0533 (12)	0.0062 (14)	0.0256 (13)	0.0025 (12)
01	0.0672 (16)	0.0949 (17)	0.0462 (11)	-0.0177 (14)	-0.0139 (11)	-0.0016 (12)
O3	0.0744 (14)	0.0423 (10)	0.0352 (9)	-0.0148 (12)	0.0038 (10)	-0.0028 (8)
O4	0.0955 (18)	0.0464 (11)	0.0520 (11)	-0.0215 (13)	-0.0023 (12)	-0.0031 (10)

05	0.0898 (18)	0.0856 (16)	0.0564 (13)	0.0162 (18)	0.0171 (13)	0.0121 (13)
O6	0.104 (2)	0.0833 (16)	0.0478 (12)	0.0046 (16)	0.0161 (13)	0.0164 (12)
07	0.0340 (10)	0.0401 (10)	0.0713 (13)	0.0010 (9)	-0.0013 (10)	-0.0011 (9)
08	0.0598 (14)	0.0443 (12)	0.121 (2)	0.0062 (12)	-0.0055 (15)	0.0025 (13)
09	0.0411 (11)	0.0433 (10)	0.0459 (10)	0.0077 (9)	0.0020 (9)	0.0041 (8)
O10	0.0643 (16)	0.0783 (16)	0.109 (2)	0.0252 (14)	0.0259 (16)	0.0027 (15)
C1	0.056 (2)	0.0394 (14)	0.0456 (15)	0.0036 (14)	0.0067 (16)	0.0000 (13)
C2	0.0304 (14)	0.0380 (13)	0.0424 (13)	-0.0031 (12)	0.0012 (12)	-0.0006 (11)
C3	0.0341 (14)	0.0414 (13)	0.0404 (13)	-0.0030 (12)	0.0020 (13)	0.0023 (11)
C4	0.0430 (17)	0.0410 (14)	0.0420 (14)	-0.0033 (14)	0.0061 (13)	-0.0014 (12)
C5	0.069 (2)	0.0420 (14)	0.0366 (14)	-0.0108 (17)	-0.0009 (15)	-0.0061 (11)
C6	0.085 (3)	0.0526 (17)	0.0435 (17)	-0.0069 (19)	0.0091 (19)	0.0018 (15)
C7	0.102 (3)	0.0585 (18)	0.0455 (16)	-0.009 (2)	-0.008 (2)	0.0058 (15)
C8	0.090 (3)	0.0427 (15)	0.0477 (16)	-0.0034 (18)	-0.0056 (19)	-0.0014 (13)
C9	0.126 (4)	0.077 (2)	0.074 (3)	0.027 (3)	0.000 (3)	-0.004 (2)
C10	0.167 (4)	0.0466 (18)	0.069 (2)	-0.035 (3)	-0.021 (3)	0.0054 (16)
C11	0.0372 (16)	0.0461 (17)	0.0669 (18)	0.0045 (14)	0.0022 (15)	0.0040 (15)
C12	0.0417 (19)	0.073 (2)	0.162 (4)	0.0073 (18)	-0.015 (2)	0.001 (3)
C13	0.0474 (19)	0.0510 (17)	0.0627 (18)	0.0127 (16)	-0.0046 (17)	-0.0060 (15)
C14	0.067 (2)	0.0540 (18)	0.096 (3)	0.0116 (18)	-0.021 (2)	0.0115 (18)

Geometric parameters (Å, °)

O2—C1	1.191 (3)	С7—Н7А	0.9700
O1—C1	1.314 (4)	С7—Н7В	0.9700
O1—H1	0.95 (4)	C8—C9	1.516 (6)
O3—C4	1.337 (3)	C8—C10	1.521 (5)
O3—C5	1.431 (3)	С9—Н9А	0.9600
O4—C4	1.188 (3)	С9—Н9В	0.9600
O5—C6	1.202 (4)	С9—Н9С	0.9600
O6—C6	1.341 (4)	C10—H10A	0.9600
O6—C7	1.464 (5)	C10—H10B	0.9600
O7—C11	1.350 (3)	C10—H10C	0.9600
O7—C2	1.424 (3)	C11—C12	1.481 (5)
O8—C11	1.178 (3)	C12—H12A	0.9600
O9—C13	1.363 (3)	C12—H12B	0.9600
O9—C3	1.425 (3)	C12—H12C	0.9600
O10—C13	1.184 (4)	C12—H12D	0.9600
C1—C2	1.517 (4)	C12—H12E	0.9600
C2—C3	1.513 (4)	C12—H12F	0.9600
С2—Н2	0.9800	C13—C14	1.486 (4)
C3—C4	1.513 (3)	C14—H14A	0.9600
С3—Н3	0.9800	C14—H14B	0.9600
C5—C6	1.499 (5)	C14—H14C	0.9600
C5—C8	1.515 (4)	C14—H14D	0.9600
С5—Н5	0.9800	C14—H14E	0.9600
С7—С8	1.535 (5)	C14—H14F	0.9600
C1-01-H1	108 (3)	H10A—C10—H10B	109.5
C4—O3—C5	116.7 (2)	C8—C10—H10C	109.5

C6—O6—C7	108.8 (3)	H10A—C10—H10C	109.5
C11—O7—C2	116.7 (2)	H10B-C10-H10C	109.5
C13—O9—C3	114.8 (2)	O8—C11—O7	123.1 (3)
O2—C1—O1	126.4 (3)	O8—C11—C12	126.1 (3)
O2—C1—C2	124.4 (3)	O7—C11—C12	110.7 (3)
O1—C1—C2	109.2 (3)	C11—C12—H12A	109.5
O7—C2—C3	107.4 (2)	C11—C12—H12B	109.5
O7—C2—C1	111.1 (2)	H12A—C12—H12B	109.5
C3—C2—C1	109.1 (2)	C11—C12—H12C	109.5
O7—C2—H2	109.7	H12A—C12—H12C	109.5
С3—С2—Н2	109.7	H12B—C12—H12C	109.5
C1—C2—H2	109.7	C11—C12—H12D	109.5
O9—C3—C2	108.03 (19)	H12A—C12—H12D	141.1
O9—C3—C4	110.3 (2)	H12B—C12—H12D	56.3
C2—C3—C4	112.1 (2)	H12CC12H12D	56.3
О9—С3—Н3	108.8	C11—C12—H12E	109.5
С2—С3—Н3	108.8	H12A—C12—H12E	56.3
С4—С3—Н3	108.8	H12B—C12—H12E	141.1
O4—C4—O3	125.5 (2)	H12C—C12—H12E	56.3
O4—C4—C3	125.8 (2)	H12D-C12-H12E	109.5
O3—C4—C3	108.7 (2)	C11—C12—H12F	109.5
O3—C5—C6	111.1 (3)	H12A—C12—H12F	56.3
O3—C5—C8	112.9 (2)	H12B—C12—H12F	56.3
C6—C5—C8	103.0 (3)	H12C—C12—H12F	141.1
O3—C5—H5	109.9	H12D-C12-H12F	109.5
С6—С5—Н5	109.9	H12E—C12—H12F	109.5
С8—С5—Н5	109.9	O10-C13-O9	122.0 (3)
O5—C6—O6	122.3 (3)	O10-C13-C14	126.6 (3)
O5—C6—C5	128.8 (3)	O9—C13—C14	111.4 (3)
O6—C6—C5	108.8 (3)	C13—C14—H14A	109.5
O6—C7—C8	104.9 (3)	C13—C14—H14B	109.5
O6—C7—H7A	110.8	H14A—C14—H14B	109.5
С8—С7—Н7А	110.8	C13—C14—H14C	109.5
О6—С7—Н7В	110.8	H14A—C14—H14C	109.5
С8—С7—Н7В	110.8	H14B—C14—H14C	109.5
H7A—C7—H7B	108.8	C13—C14—H14D	109.5
C5—C8—C9	113.2 (3)	H14A—C14—H14D	141.1
C5—C8—C10	111.2 (3)	H14B-C14-H14D	56.3
C9—C8—C10	111.1 (3)	H14CC14H14D	56.3
C5—C8—C7	97.9 (2)	C13—C14—H14E	109.5
C9—C8—C7	111.9 (3)	H14A—C14—H14E	56.3
C10—C8—C7	110.9 (3)	H14B—C14—H14E	141.1
С8—С9—Н9А	109.5	H14CC14H14E	56.3
С8—С9—Н9В	109.5	H14D—C14—H14E	109.5
Н9А—С9—Н9В	109.5	C13—C14—H14F	109.5
С8—С9—Н9С	109.5	H14A—C14—H14F	56.3
Н9А—С9—Н9С	109.5	H14B—C14—H14F	56.3
Н9В—С9—Н9С	109.5	H14C—C14—H14F	141.1
C8—C10—H10A	109.5	H14D—C14—H14F	109.5

109.5	H14E—C14—H14F	109.5
-151.0 (2)	C7—O6—C6—O5	-176.5 (3)
89.7 (3)	C7—O6—C6—C5	3.9 (3)
0.8 (4)	O3—C5—C6—O5	31.1 (5)
179.6 (2)	C8—C5—C6—O5	152.2 (4)
-117.5 (3)	O3—C5—C6—O6	-149.3 (2)
61.4 (3)	C8—C5—C6—O6	-28.2 (3)
-159.5 (2)	C6—O6—C7—C8	21.8 (3)
77.7 (3)	O3—C5—C8—C9	-84.0 (3)
-69.4 (3)	C6—C5—C8—C9	156.2 (3)
51.1 (3)	O3—C5—C8—C10	42.0 (4)
52.3 (3)	C6—C5—C8—C10	-77.9 (3)
172.8 (2)	O3—C5—C8—C7	158.0 (3)
-0.2 (4)	C6—C5—C8—C7	38.2 (3)
-179.5 (2)	O6—C7—C8—C5	-36.8 (3)
2.9 (4)	O6—C7—C8—C9	-155.8 (3)
-117.5 (3)	O6—C7—C8—C10	79.5 (3)
-177.8 (2)	C2	-0.1 (5)
61.8 (3)	C2	179.9 (3)
-91.8 (3)	C3—O9—C13—O10	-0.1 (4)
153.1 (3)	C3—O9—C13—C14	178.6 (2)
	109.5 $-151.0 (2)$ $89.7 (3)$ $0.8 (4)$ $179.6 (2)$ $-117.5 (3)$ $61.4 (3)$ $-159.5 (2)$ $77.7 (3)$ $-69.4 (3)$ $51.1 (3)$ $52.3 (3)$ $172.8 (2)$ $-0.2 (4)$ $-179.5 (2)$ $2.9 (4)$ $-117.5 (3)$ $-177.8 (2)$ $61.8 (3)$ $-91.8 (3)$ $153.1 (3)$	109.5 $H14E-C14-H14F$ $-151.0 (2)$ $C7-O6-C6-O5$ $89.7 (3)$ $C7-O6-C6-C5$ $0.8 (4)$ $03-C5-C6-O5$ $179.6 (2)$ $C8-C5-C6-O5$ $-117.5 (3)$ $03-C5-C6-O6$ $61.4 (3)$ $C8-C5-C6-O6$ $-159.5 (2)$ $C6-O6-C7-C8$ $77.7 (3)$ $03-C5-C8-C9$ $-69.4 (3)$ $C6-C5-C8-C9$ $51.1 (3)$ $03-C5-C8-C10$ $52.3 (3)$ $C6-C5-C8-C7$ $-0.2 (4)$ $C6-C5-C8-C7$ $-179.5 (2)$ $06-C7-C8-C5$ $2.9 (4)$ $06-C7-C8-C5$ $2.9 (4)$ $06-C7-C8-C10$ $-177.8 (2)$ $C2-O7-C11-O8$ $61.8 (3)$ $C3-O9-C13-O10$ $153.1 (3)$ $C3-O9-C13-C14$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···O5 ⁱ	0.95 (5)	1.89 (4)	2.725 (3)	146 (4)
C5—H5···O2 ⁱⁱ	0.98	2.53	3.396 (4)	147
C12—H12A···O8 ⁱⁱⁱ	0.96	2.54	3.476 (4)	166
C14—H14A····O4 ^{iv}	0.96	2.47	3.381 (4)	159
C14—H14B…O10 ^v	0.96	2.29	3.231 (5)	165

Symmetry codes: (i) -x+3/2, -y+1, z+1/2; (ii) -x+1/2, -y+1, z-1/2; (iii) x-1/2, -y+3/2, -z+1; (iv) x+1/2, -y+1/2, -z+1; (v) x-1/2, -z+1; (v) x-1/2; (v)

